Lỗ đen vũ trụ còn gọi là hố đen hay hốc đen, là một vùng không – thời gian có một trường hấp dẫn mạnh đến nỗi không có vật chất nào chiếm khối lượng, không có không gian nhất định và ánh sáng không thể thoát ra ngoài. Thuyết tương đối rộng của Anhxtanh tiên đoán một lượng vật chất với khối lượng đủ lớn nằm trong phạm vi đủ nhỏ sẽ làm biến dạng không thời gian để trở thành lỗ đen. Lỗ đen gọi là “đen” bởi vì nó hấp thụ mọi bức xạ và vật chất hút qua chân trời sự kiện; nó cũng không phải là một loại “lỗ” hay “hố” nào mà là vùng không thời gian không để cho một thứ gì thoát ra.
Các hố đen có thể hình thành khi một ngôi sao khổng lồ bùng phát ra nhiên liệu hạt nhân và sụp đổ dưới trọng lực riêng của nó. Nếu ngôi sao đủ lớn không có
lực nào có thể chống lại lực hấp dẫn ngày càng tăng, và nó sẽ sụp đổ đến một điểm mật độ vô hạn. Trong giai đoạn ngôi sao khổng lồ suy sụp chân trời sự kiện, vùng kì dị hấp dẫn hình thành, ánh sáng bị mắc kẹt không thoát ra được và vật thể trở nên vô hình.
Tại trung tâm của lỗ đen có một vùng kì dị hấp dẫn, nơi độ cong không thời gian có giá trị vô hạn (hay kì dị độ cong). Đối với lỗ đen không quay, vùng này chỉ là một điểm r = 0, và đối với lỗ đen quay, vùng này hình thành lên vòng tròn kì dị nằm trong mặt phẳng của xích đạo lỗ đen. Vùng kì dị có thể tích bằng không, nó chứa toàn bộ khối lượng của lỗ đen và có mật độ vật chất lớn vô hạn. Chân trời sự kiện: Bề mặt biểu kiến của lỗ đen có dạng xấp xỉ hình cầu bao quanh vùng kì dị được định nghĩa là chân trời sự kiện—biên giới trong không thời gian mà khi vượt qua nó vật chất và bức xạ chỉ có thể đi về tâm lỗ đen.
Không một thứ gì, ngay cả ánh sáng, có thể từ trong lỗ đen thoát ra ngoài chân trời sự kiện. Chân trời sự kiện được định nghĩa như vậy bởi vì đối với những sự kiện xảy ra bên trong nó, mọi thông tin của sự kiện không thể vượt ra ngoài để đến được một quan sát viên ở xa lỗ đen, khiến cho người đó không thể biết được bên trong nó là như thế nào.
Đối với một người ở rất xa, họ sẽ thấy những đồng hồ càng gần lỗ đen chạy chậm hơn so với những đồng hồ nằm xa hơn. Hiệu ứng này gọi là sự giãn thời gian do hấp dẫn, quan sát viên ở xa thấy một vật rơi vào lỗ đen dường như chuyển động chậm dần khi nó đến gần chân trời sự kiện, và cần một thời gian vô hạn để đến tới chân trời này. Tuy đối với người ở xa tưởng chừng như vật đó rơi đến và đứng yên tại nơi gần biên giới lỗ đen, nhưng đối với vật thể nó chỉ cần thời gian hữu hạn để vượt qua chân trời lỗ đen.
Đi vào bên trong lỗ đen và du hành thời gian: Mọi thứ rơi qua chân trời lỗ đen vào vùng kì dị đều bị phá hủy hoàn toàn. Nhưng giả sử có nhà du hành vũ trụ mạo hiểm bắt đầu tiến gần thăm dò một lỗ đen siêu khối lượng bằng con tàu của mình. Lúc ở xa, người đó và con tàu ở trong trạng thái không trọng lượng vì lực hấp dẫn khá yếu, cơ thể anh ta cũng không cảm thấy có lực kéo nào. Đối với lỗ đen càng lớn, lực thủy triều gần chân trời sự kiện càng yếu hơn so với lỗ đen nhỏ hơn. Điều này cho phép con tàu có khả năng tiếp cận biên giới lỗ đen. Giả sử nhà du hành ngồi lái với chân anh ta hướng về lỗ đen. Càng gần biên giới, nhà du hành cảm thấy rõ rệt lực thủy triều tác động lên phía chân mạnh hơn so với phần đầu. Giả sử con tàu và nhà du hành chịu được sức ép và kéo; và băng qua chân trời sự kiện lỗ đen. Trong con tàu, nơi hệ tọa độ là cục bộ, anh ta sẽ không biết khi nào hay cảm giác gì lúc con tàu băng qua mặt biên này (ngoại trừ lực thuỷ triều).
Trong lúc đi vào, nếu anh ta nhìn ngược ra phía ngoài vũ trụ, nhà du hành sẽ thấy các ngôi sao nằm lệch khỏi vị trí của chúng, càng vào sâu thì các ngôi sao càng sáng hơn và nằm gần nhau hơn. Điều này là do lỗ đen làm uốn cong không thời gian và hiệu ứng dịch chuyển đỏ do hấp dẫn làm bước sóng tia sáng phát ra từ các ngôi sao bị hút về lỗ đen dịch chuyển về phía tím nhiều hơn. Khi đã băng qua chân trời, chỉ hết thời gian hữu hạn đo ở trong con tàu, anh ta cùng con tàu sẽ không tránh khỏi bị phá hủy bởi hiệu ứng thủy triều cực mạnh và hòa vào vùng kì dị của lỗ đen.
Còn đối với người ở ngoài xa lỗ đen, thông qua tín hiệu con tàu phát ra (hay hình ảnh của nó), họ sẽ thấy con tàu rơi chậm dần về phía chân trời sự kiện. Tín hiệu nhận được sẽ chuyển dần từ bước sóng ngắn sang bước sóng dài hơn hay dịch chuyển đỏ hơn. Và dường như phải đợi rất lâu (gần như lâu vô hạn, đo bởi đồng hồ nằm rất xa lỗ đen) để thấy con tàu rơi qua biên giới lỗ đen. Người ở xa nhận được tín hiệu có bước sóng càng lúc càng dài, đến khi thiết bị của họ không còn khả năng thu được bước sóng dài đó nữa thì coi như hình ảnh và tín hiệu con tàu đã biến mất.
Nếu như nhà du hành thay vì đi thẳng vào lỗ đen, anh ta lái con tàu quay quanh nó rất nhiều vòng thì hiệu ứng giãn thời gian do hấp dẫn làm cho thời gian trôi trong con tàu chậm hơn so với thời gian đo bởi đồng hồ ở rất xa lỗ đen. Sau khi quay đủ nhiều vòng, con tàu rời lỗ đen và trở về nơi xuất phát. Lúc này nhà du hành có độ tuổi trẻ hơn nhiều so với những người tại đây, và coi như anh ta đã du hành đến tương lai của chính mình.
Phát triển và sáp nhập: Trong thời gian tồn tại của lỗ đen, nó có thể tăng thêm khối lượng bằng quá trình hút vật chất từ không gian xung quanh vào. Nó sẽ liên tục hấp thụ khí và bụi liên sao từ môi trường xung quanh và cả bức xạ nền vi sóng vũ trụ.
Lỗ đen có thể sáp nhập với các thiên thể khác như sao hay lỗ đen khác tạo nên những lỗ đen khổng lồ. Các lỗ đen khối lượng khổng lồ nằm tại tâm mỗi thiên hà có thể sáp nhập với nhau trong giai đoạn hai thiên hà va chạm và sáp nhập. Quá trình thu hút vật chất về phía lỗ đen sẽ hình thành lên một đĩa sáng bồi tụ chứa vật chất trạng thái plasma nóng hàng triệu độ, và vùng này phát ra nguồn tia X rất mạnh. Thông qua nguồn tia X mà các nhà thiên văn có thể nhận biết ra sự tồn tại của lỗ đen.
Bốc hơi: Năm 1974, Hawking chứng minh rằng lỗ đen không hoàn toàn đen mà có phát ra một lượng nhỏ bức xạ nhiệt; một hiệu ứng mà ngày nay gọi là bức xạ Hawking. Nếu lý thuyết của Hawking về lỗ đen bức xạ là đúng, thì các lỗ đen sẽ giảm dần khối lượng và bốc hơi sau một thời gian bởi vì chúng mất khối lượng thông qua năng lượng của các hạt phát ra, các lỗ đen khối lượng lớn phát ra ít bức xạ hơn so với lỗ đen khối lượng nhỏ hơn.
Giả sử một lỗ đen có khối lượng bằng khối lượng Mặt Trời thì nó có nhiệt độ Hawking bằng 100 nanokelvin. Giá trị này nhỏ hơn hẳn nhiệt độ 2,7 K của bức xạ nền vi sóng vũ trụ. Do đó lỗ đen khối lượng lớn sẽ nhận thêm khối lượng từ bức xạ nền vũ trụ so với lượng nhỏ bức xạ Hawking chúng phát ra, và vì vậy chúng lớn lên thay vì nhỏ dần đi. Để có nhiệt độ Hawking lớn hơn 2,7 K (và cho phép bốc hơi), lỗ đen phải có khối lượng nhỏ hơn khối lượng Mặt Trăng. Những lỗ đen này chỉ có đường kính bé hơn 1/10 của milimét.
Lỗ đen càng nhỏ thì hiệu ứng bức xạ càng mạnh. Một lỗ đen có khối lượng bằng người bình thường sẽ ngay lập tức bốc hơi. Tuy lỗ đen có thể bốc hơi theo lý thuyết, nhưng nó không thể tách thành hai lỗ đen nhỏ hơn, lỗ đen chỉ có thể sáp nhập với nhau.
Views: 10